Fast Computation of Abelian Runs

Gabriele Fici ${ }^{1}$ Tomasz Kociumaka ${ }^{2}$ Thierry Lecroq ${ }^{3}$ Arnaud Lefebvre ${ }^{3}$ Élise Prieur-Gaston ${ }^{3}$

${ }^{1}$ University of Palermo, Italy
${ }^{2}$ University of Warsaw, Poland
${ }^{3}$ Normandie Université, Université de Rouen, LITIS EA 4108, France

SeqBio 2015
November 26th-27th 2015 - Orsay, France

Classical periods and runs

Definition

An integer p is a period of a string w if $w[i]=w[i+p]$ for $0 \leq i \leq|w|-p-1$.

Example

abaabaab has period 3: aba $\cdot \mathrm{aba} \cdot \mathrm{ab}$

Definition

A factor x of w is a run if it has maximal periodicity (cannot be extended to the left nor to the right).

Example

ababa in a run of abaababaa: aba•ab•ab•a•a

Classical periods and runs

Definition

An integer p is a period of a string w if $w[i]=w[i+p]$ for $0 \leq i \leq|w|-p-1$.

Example

abaabaab has period 3: aba $\cdot \mathrm{aba} \cdot \mathrm{ab}$

Definition

A factor x of w is a run if it has maximal periodicity (cannot be extended to the left nor to the right).

Example

ababa in a run of abaababaa: aba•a•ba•ba•a

Abelian period

The Parikh vector $\mathcal{P} w$ of the string w over the ordered alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots a_{\sigma}\right\}$ is $\mathcal{P} w=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{\sigma}}\right)$.
E.g. $\mathcal{P}_{\text {aacabb }}=(3,2,1)$.

Let $\left|\mathcal{P}_{w}\right|$ be the norm of \mathcal{P} defined by $\left|\mathcal{P}_{w}\right|=\sum_{i=1}^{\sigma}|w|_{a_{i}}$.
E.g. $\left|\mathcal{P}_{\text {aacabb }}\right|=6$.

Definition (Constantinescu, llie 2006)

A Parikh vector \mathcal{P} is an abelian period for a string w if

$$
w=u_{0} u_{1} \cdots u_{k-1} u_{k}
$$

for some $k>2$, where $\mathcal{P} u_{0} \subset \mathcal{P} u_{1}=\cdots=\mathcal{P} u_{u_{-1}} \supset \mathcal{P} u_{k}$, and $\mathcal{P} u_{1}=\mathcal{P}$.
u_{0} and u_{k} are called resp. head and tail of the abelian period.

Example

$(1,1)$ is the smallest abelian period of $w=\mathrm{abaab}=\mathrm{a} \cdot \mathrm{ba} \cdot \mathrm{ab} \cdot \varepsilon$.

Motivations

> J. Mendivelso, C. Pino, L. F. Niño, Y. J. Pinzón Approximate Abelian Periods to Find Motifs in Biological Sequences CIBB 2014

They analysed gene expressions time series: they identifyied periodic changes in expression levels in the cell-cycle of Megasphaera cerevisiae.

Abelian run

Definition

A substring with abelian period \mathcal{P} is maximal if it cannot be extended to the left nor to the right by one letter keeping the same abelian period \mathcal{P}.

Definition

An abelian run of period \mathcal{P} is an occurrence of a maximal substring of period \mathcal{P} containing at least two occurrences of \mathcal{P}.

Example

$w=$ ababaaa. The prefix $\mathrm{ab} \cdot \mathrm{ab} \cdot \mathrm{a}$ has abelian period $(1,1)$ but it is not an abelian run since the prefix $\mathrm{a} \cdot \mathrm{ba} \cdot \mathrm{ba} \cdot \mathrm{a}$ has also abelian period $(1,1)$. This latter is an abelian run of period $(1,1)$.

The Problems

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

The Problems

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,
\rightarrow an $O(n)$-time and $O(\sigma+|\mathcal{P}|)$-space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position $i+1$.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

The Problems

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,
\rightarrow an $O(n)$-time and $O(\sigma+|\mathcal{P}|)$-space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position $i+1$.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
\rightarrow an $O(n p)$-time online algorithm.

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

The Problems

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,
\rightarrow an $O(n)$-time and $O(\sigma+|\mathcal{P}|)$-space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position $i+1$.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
\rightarrow an $O(n p)$-time online algorithm.

Problem 3

Given a string w of length n, find all the abelian runs occurring in w, \rightarrow an $O\left(n^{2}\right)$-time (resp. $O\left(n^{2} \log \sigma\right)$-time) offline randomized (resp. deterministic) algorithm.

Problem 1: Previous work

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,
$O(n p)$-time and $O(\sigma+p)$ space online solution in
G. Fici, T. L., A. Lefebvre and É. Prieur-Gaston

Online Computation of Abelian Runs
LATA 2015

Problem 1

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P}, find all the abelian runs with period \mathcal{P} occurring in w,

Lemma

If $w[i . . j]$ and $w\left[i^{\prime} . . j^{\prime}\right]$ have abelian period \mathcal{P} and if $w[i . . j]$ is properly contained in $w\left[i^{\prime} . . j^{\prime}\right]$ then $w[i . . j]$ is not an abelian run with period \mathcal{P}.

Corollary
There is at most 1 abelian run with period \mathcal{P} starting at each position of w.

Problem 1: Anchor

Anchor

Given a string w,
if $w[i ., j]=u_{0} \cdots u_{k}$ has abelian period \mathcal{P}, with $|\mathcal{P}|=p$ and i_{s} is the starting position of u_{s} in w with $1 \leq s \leq k$ then $i_{s} \bmod p$ is called the anchor of the factorization.

Anchored period

$w[i ., j]$ has abelian period \mathcal{P} anchored at k if it has abelian period \mathcal{P} whose anchor is $k \bmod p$.

Anchored run

$w[i . . j]$ is a k-anchored run with period \mathcal{P} if it has abelian period $|\mathcal{P}|$ anchored at k and if it is maximal $(w[i-1 . . j]$ and $w[i . . j+1]$ if they exist have no abelian period $|\mathcal{P}|$ anchored at k).

Problem 1

Definition

Let $B_{i}[k]$ be the starting position of the longest suffix of $w[0 . . i]$ which has period \mathcal{P} anchored at k (or ∞) for $0 \leq k<p$.
Let b_{i} be the starting position of the longest suffix of $w[0 \ldots i]$ whose Parikh vector is contained in or equal to \mathcal{P}.

Lemma

$B_{i}[k \bmod p] \leq k$ for $b_{i} \leq k \leq i+1$
and
$B_{i}[k \bmod p]=\infty$ for $i-p+1<k<b_{i}$

impossible tail $\nsubseteq \mathcal{P}$
$B_{i}[k \bmod p]=\infty$ for $i-p+1<k<b_{i}$.

Problem 1

Computation of B_{i} from b_{i-1}, b_{i} and B_{i-1}

Lemma

(1) $B_{i}[k \bmod p]=\infty \neq B_{i-1}[k \bmod p]$ for $\max \left\{i-p+1, b_{i-1}\right\} \leq k<b_{i}$
(2) $B_{i}[k \bmod p]=B_{i-1}[k \bmod p]$ for $i-p+1<k<b_{i-1}$ and for $b_{i} \leq k \leq i$
(0) $B_{i}[i+1 \bmod p]= \begin{cases}b_{i} & \text { if } b_{i}>i-p+1 \\ B_{i-1}[i-p+1 \bmod p] & \text { otherwise }\end{cases}$

Problem 1

$B_{i}[k \bmod p]=B_{i-1}[k \bmod p]$ for $b_{i} \leq k \leq i$.

Problem 1

Lemma

$w[b . . i-1]$ is a k-anchored run with period \mathcal{P} iff $B_{i-1}[k \bmod p]=b \leq k-2 p$ and $B_{i}[k \bmod p]>b$

Problem 1

Lemma

$w[b . . i-1]$ is an abelian run with period \mathcal{P} iff
it is a k-anchored run with period \mathcal{P} and
$B_{i-1}\left[k^{\prime} \bmod p\right] \geq b$ and $B_{i}\left[k^{\prime} \bmod p\right]>b$
for every k^{\prime}

Problem 1

```
\(\mathcal{P}=(2,2)\)
    \(\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\)
    \(w \mathrm{a}\) b a a b a b a a b b b
    \(\uparrow\)
    \(\begin{array}{ccccc} & 0 & 1 & 2 & 3 \\ B & 0 & \infty & \infty & \infty\end{array}\)
\(L=(0)\)
```


Problem 1

```
\mathcal{P}=(2,2)
    lllllllllllll
    w a b a a b a b a a b b b
        \uparrow
        0
    B 0 0 \infty \infty
L=(0,1)
```


Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w \text { a b a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B 000 \infty \\
& L=(0,1,2)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w \text { a b a a b a b a a b b b } \\
& \uparrow \\
& 0123 \\
& B \quad 0 \quad 0 \quad 0 \\
& L=(0,1,2,3)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& 012234567891011 \\
& w \text { a b a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B \infty 000 \\
& L=(\emptyset, 1,2,3)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w \mathrm{a} \text { b a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B \quad 1 \quad 0 \quad 0 \quad 0 \\
& L=(1,2,3,0)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w \mathrm{a} \text { b a a b a b a a b b b } \\
& \uparrow \\
& 0123 \\
& \text { B } 1000 \\
& L=(1,2,3,0)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 11
\end{array} \\
& w a \mathrm{~b} \text { a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B 1000 \\
& L=(1,2,3,0)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 11
\end{array} \\
& w \text { a b a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B 10 \infty 0 \\
& L=(1, \mathfrak{2}, 3,0)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \\
& \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& & & & & & & \uparrow & & & & \\
& \\
& 0 & 1 & 2 & 3 & & & & & & & \\
B & 1 & 0 & 3 & 0 & & & & & & & \\
L= & (1,3,0,2)
\end{array}
$$

Problem 1

$$
\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
\\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right]
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w a \mathrm{~b} \text { a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B \quad 1 \quad 0 \quad 3 \quad 0 \\
& L=(1,3,0,2)
\end{aligned}
$$

Problem 1

$$
\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
\\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right]
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow & & & \\
& \\
& 0 & 1 & 2 & 3 & & & & & & & \\
B & 1 & 0 & 0 & & & & & & & & \\
L & =(1,3,0,2)
\end{array}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10
\end{array} \\
& w \mathrm{a} \text { b a a b a b a a b b b } \\
& \uparrow \\
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& B 1 \infty 30 \\
& L=(1,3,0,2)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow & & & \\
& \\
& 0 & 1 & 2 & 3 & & & & & & & \\
& 1 & & & & & & & & & & \\
L & =(3,0,2,1)
\end{array}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow & \\
B & 1 & 6 & 3 & 0 & & & & & & & \\
& 0 & 1 & 2 & 3 & & & & & & & \\
& =(3,0,2,1)
\end{array}
$$

Problem 1

$$
\left.\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
\\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right] \begin{array}{llllllllll}
\\
B & 1 & 6 & 3 & 0
\end{array}\right]
$$

Problem 1

$$
\left.\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
\\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right] \begin{array}{llllllllll}
\\
B & 1 & 6 & 3 & 0
\end{array}\right]
$$

Problem 1

$$
\left.\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
\\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right] \begin{array}{llllllllll}
\\
B & 1 & 6 & 3 & 0
\end{array}\right]
$$

Problem 1

$$
\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
w \\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\text { a } & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\uparrow
\end{array}\right] \begin{array}{cccccccccc}
0 & 1 & 2 & 3 & & & & & &
\end{array}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& w \begin{array}{cccccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
& \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} \\
\mathrm{~b}
\end{array} \\
& \uparrow \\
& B \begin{array}{cccc}
0 & 1 & 2 & 3 \\
\infty & \infty & 3 & 0
\end{array} \\
& L=(3,2, \not \subset)
\end{aligned}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& w \mathrm{a} \text { b a a b a b a a b b b } \\
& \uparrow \\
& L=(3,2,0)
\end{aligned}
$$

Problem 1

$$
\left.\begin{array}{l}
\mathcal{P}=(2,2) \\
w \\
w
\end{array} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& \\
& 0 & 1 & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} \\
& \mathrm{~b} & \\
& 10 & \infty & \infty & 0
\end{array}\right]
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& w \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& \\
& 0 & 1 & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b}
\end{array}
$$

Problem 1

$$
\begin{aligned}
& \mathcal{P}=(2,2) \\
& w \\
& w
\end{aligned} \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& \\
& 0 & 1 & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b}
\end{array}
$$

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,

k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2

Given a w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}|=p$,
k-anchored runs

Problem 2: Idea

Run algorithm for Problem 1 in parallel for each of the p possible anchors.

Problem 2: Idea

Run algorithm for Problem 1 in parallel for each of the p possible anchors.
$\rightarrow O(n p)$ time algorithm

Problem 3: Previous work

Matsuda, Inenaga, Bannai \& Takeda, PSC 2014

- Computation of all abelian squares using [Cummings \& Smyth, 1997]:

$$
L_{i}=\left\{j \mid \mathcal{P}_{w[i-j+1 . . i]}=\mathcal{P}_{w[i+1 . . i+j]}, 0 \leq j \leq \min \{i+1, n-i\}\right\}
$$

The L_{i} 's are stored in a 2-dimensional boolean array L of size $\lfloor n / 2\rfloor \times(n-1): L[j, i]=1$ if $j \in L_{i}$ and $L[j, i]=0$ otherwise.

- For each $1 \leq j \leq\lfloor n / 2\rfloor$ all maximal abelian repetitions of period length j are computed in $O(n)$: the j-th row of L is scanned in increasing order of the column index.
- clever computation of heads and tails.
$\longrightarrow O\left(n^{2}\right)$ offline computation of anchored runs

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: Previous work

L for $w=$ abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

Problem 3: All the runs

- start with the Matsuda et al algorithm
- filter out anchored runs which are properly contained in another anchored run with the same period
solution: naming (giving an identifier for every period)
assign to each factor of w an identifier so that 2 factors are abelian-equivalent iff their identifiers are equal

diff-representation

Idea

	a	b	c	
w	0	0	0	
a	1	0	0	$v[0]=1$
b	1	1	0	$v[1]=1$
a	2	1	0	$v[0]=2$
a	3	1	0	$v[0]=3$
b	3	2	0	$v[1]=2$
a	4	2	0	$v[0]=4$
b	4	3	0	$v[1]=3$
a	5	3	0	$v[0]=5$
a	6	3	0	$v[0]=6$
b	6	4	0	$v[1]=4$
b	6	5	0	$v[1]=5$
b	6	6	0	$v[1]=6$

diff-representation

Idea

	a	b	c	
w	0	0	0	
a	1	0	0	$v[0]=1$
b	1	1	0	$v[1]=1$
a	2	1	0	$v[0]=2$
a	3	1	0	$v[0]=3$
b	3	2	0	$v[1]=2$
a	4	2	0	$v[0]=4$
b	4	3	0	$v[1]=3$
a	5	3	0	$v[0]=5$
a	6	3	0	$v[0]=6$
b	6	4	0	$v[1]=4$
b	6	5	0	$v[1]=5$
b	6	6	0	$v[1]=6$

The diff-representations of all the factors of w can be computed in $O\left(n^{2}\right)$ time.

Naming

Theorem [Kociumaka, Radoszewsji \& Rytter, STACS 2013]

Given a sequence of vectors of dimension r represented using a diff-representation of size m, the integer vector equality problem can be solved in

- $O(m+r \log m)$ time deterministically
- $O(m+r)$ time using a Monte Carlo algorithm

KRR2013

Problem 3

Given a string w of length n, all the abelian runs occurring in w, can be found in $O\left(n^{2}\right)$-time (resp. $O\left(n^{2} \log \sigma\right)$-time) by an offline randomized (resp. deterministic) algorithm.

Conclusions

Given a string w of length n we designed:

- an online algorithm that finds all the abelian runs with period \mathcal{P} occurring in w in time $O(n)$ and space $O(\sigma+|\mathcal{P}|)$
- an online algorithm that finds all the abelian runs with period \mathcal{P} such that $|\mathcal{P}|=p$ occurring in w in time $O(n p)$
- an offline randomized (resp. deterministic) algorithm that finds all the abelian runs occurring in w in time $O\left(n^{2}\right)\left(\right.$ resp. $O\left(n^{2} \log \sigma\right)$)

Any idea on the number of abelian runs in a string?

Thank you for your attention

