Fast Computation of Abelian Runs

Gabriele Fici¹ Tomasz Kociumaka² Thierry Lecroq³ Arnaud Lefebvre³ Élise Prieur-Gaston³

¹ University of Palermo, Italy
 ² University of Warsaw, Poland
 ³ Normandie Université, Université de Rouen, LITIS EA 4108, France

SeqBio 2015 November 26th-27th 2015 – Orsay, France

Definition

An integer p is a period of a string w if w[i] = w[i + p] for $0 \le i \le |w| - p - 1$.

Example

abaabaab has period 3: $aba \cdot aba \cdot ab$

Definition

A factor x of w is a run if it has maximal periodicity (cannot be extended to the left nor to the right).

Example

ababa in a run of abaababaa: aba·ab·ab·a·a

Definition

An integer p is a period of a string w if w[i] = w[i + p] for $0 \le i \le |w| - p - 1$.

Example

abaabaab has period 3: $aba \cdot aba \cdot ab$

Definition

A factor x of w is a run if it has maximal periodicity (cannot be extended to the left nor to the right).

Example

ababa in a run of abaababaa: aba·a·ba·ba·a

Abelian period

The Parikh vector \mathcal{P}_w of the string w over the ordered alphabet $\Sigma = \{a_1, a_2, \dots a_{\sigma}\}$ is $\mathcal{P}_w = (|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_{\sigma}})$. E.g. $\mathcal{P}_{aacabb} = (3, 2, 1)$. Let $|\mathcal{P}_w|$ be the norm of \mathcal{P} defined by $|\mathcal{P}_w| = \sum_{i=1}^{\sigma} |w|_{a_i}$.

E.g. $|\mathcal{P}_{aacabb}| = 6.$

Definition (Constantinescu, Ilie 2006)

A Parikh vector \mathcal{P} is an abelian period for a string w if

 $w = u_0 u_1 \cdots u_{k-1} u_k$

for some k > 2, where $\mathcal{P}_{u_0} \subset \mathcal{P}_{u_1} = \cdots = \mathcal{P}_{u_{k-1}} \supset \mathcal{P}_{u_k}$, and $\mathcal{P}_{u_1} = \mathcal{P}$.

 u_0 and u_k are called resp. head and tail of the abelian period.

Example

(1,1) is the smallest abelian period of $w = abaab = a \cdot ba \cdot ab \cdot \varepsilon$.

J. Mendivelso, C. Pino, L. F. Niño, Y. J. Pinzón Approximate Abelian Periods to Find Motifs in Biological Sequences CIBB 2014

They analysed gene expressions time series: they identifyied periodic changes in expression levels in the cell-cycle of *Megasphaera cerevisiae*.

Definition

A substring with abelian period \mathcal{P} is maximal if it cannot be extended to the left nor to the right by one letter keeping the same abelian period \mathcal{P} .

Definition

An abelian run of period \mathcal{P} is an occurrence of a maximal substring of period \mathcal{P} containing at least two occurrences of \mathcal{P} .

Example

w = ababaaa. The prefix $ab \cdot ab \cdot a$ has abelian period (1,1) but it is not an abelian run since the prefix $a \cdot ba \cdot a$ has also abelian period (1,1). This latter is an abelian run of period (1,1).

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w,

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}| = p$,

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w,

 \rightarrow an O(n)-time and $O(\sigma + |\mathcal{P}|)$ -space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position i + 1.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}| = p$,

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w,

 \rightarrow an O(n)-time and $O(\sigma + |\mathcal{P}|)$ -space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position i + 1.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}| = p$, \rightarrow an O(np)-time online algorithm.

Problem 3

Given a string w of length n, find all the abelian runs occurring in w,

The Problems

Problem 1

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w, \rightarrow an O(n)-time and $O(\sigma + |\mathcal{P}|)$ -space algorithm that solves this problem online, i.e., processes positions of the string from left to right and outputs the runs ending in position i when processing position i + 1.

Problem 2

Given a string w of length n and an integer p, find all the abelian runs with period \mathcal{P} occurring in w such that $|\mathcal{P}| = p$, \rightarrow an O(np)-time online algorithm.

Problem 3

Given a string w of length n, find all the abelian runs occurring in w, \rightarrow an $O(n^2)$ -time (resp. $O(n^2 \log \sigma)$ -time) offline randomized (resp. deterministic) algorithm.

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w,

O(np)-time and $O(\sigma+p)$ space online solution in

G. Fici, T. L., A. Lefebvre and É. Prieur-Gaston Online Computation of Abelian Runs LATA 2015

Given a string w of length n and a Parikh vector \mathcal{P} , find all the abelian runs with period \mathcal{P} occurring in w,

Lemma

If w[i..j] and w[i'..j'] have abelian period \mathcal{P} and if w[i..j] is properly contained in w[i'..j'] then w[i..j] is not an abelian run with period \mathcal{P} .

Corollary

There is at most 1 abelian run with period \mathcal{P} starting at each position of w.

Anchor

Given a string w, if $w[i..j] = u_0 \cdots u_k$ has abelian period \mathcal{P} , with $|\mathcal{P}| = p$ and i_s is the starting position of u_s in w with $1 \le s \le k$ then $i_s \mod p$ is called the anchor of the factorization.

Anchored period

w[i..j] has abelian period \mathcal{P} anchored at k if it has abelian period \mathcal{P} whose anchor is $k \mod p$.

Anchored run

w[i..j] is a *k*-anchored run with period \mathcal{P} if it has abelian period $|\mathcal{P}|$ anchored at *k* and if it is maximal (w[i-1..j] and w[i..j+1] if they exist have no abelian period $|\mathcal{P}|$ anchored at *k*).

Definition

Let $B_i[k]$ be the starting position of the longest suffix of w[0..i] which has period \mathcal{P} anchored at k (or ∞) for $0 \le k < p$. Let b_i be the starting position of the longest suffix of w[0..i] whose Parikh vector is contained in or equal to \mathcal{P} .

Lemma

$$\begin{split} B_i[k \bmod p] &\leq k \text{ for } b_i \leq k \leq i+1 \\ \text{and} \\ B_i[k \bmod p] &= \infty \text{ for } i-p+1 < k < b_i \end{split}$$

Computation of B_i from b_{i-1} , b_i and B_{i-1}

Lemma
a
$$B_i[k \mod p] = \infty \neq B_{i-1}[k \mod p]$$
 for
 $\max\{i - p + 1, b_{i-1}\} \le k < b_i$
b $B_i[k \mod p] = B_{i-1}[k \mod p]$ for $i - p + 1 < k < b_{i-1}$ and for
 $b_i \le k \le i$
b $B_i[i + 1 \mod p] = \begin{cases} b_i & \text{if } b_i > i - p + 1 \\ B_{i-1}[i - p + 1 \mod p] & \text{otherwise} \end{cases}$

Lemma

w[b..i-1] is a k-anchored run with period \mathcal{P} iff $B_{i-1}[k \mod p] = b \le k - 2p$ and $B_i[k \mod p] > b$

Lemma

$$\begin{split} & w[b.\,.\,i-1] \text{ is an abelian run with period } \mathcal{P} \text{ iff} \\ & \text{it is a } k\text{-anchored run with period } \mathcal{P} \text{ and} \\ & B_{i-1}[k' \bmod p] \geq b \text{ and } B_i[k' \bmod p] > b \\ & \text{for every } k' \end{split}$$

$\mathcal{P} = (2, 2)$ 0 1 2 3 4 5 6 7 8 9 10 11 w a b a a b a b a a b b b \uparrow 0 1 2 3 B 0 $\infty \infty \infty$ L = (0)

k-anchored runs

Run algorithm for Problem 1 in parallel for each of the p possible anchors.

Run algorithm for Problem 1 in parallel for each of the p possible anchors.

 $\rightarrow O(np)$ time algorithm

Matsuda, Inenaga, Bannai & Takeda, PSC 2014

• Computation of all abelian squares using [Cummings & Smyth, 1997]:

$$L_i = \{j \mid \mathcal{P}_{w[i-j+1..i]} = \mathcal{P}_{w[i+1..i+j]}, 0 \le j \le \min\{i+1, n-i\}\}$$

The L_i 's are stored in a 2-dimensional boolean array L of size $\lfloor n/2 \rfloor \times (n-1)$: L[j,i] = 1 if $j \in L_i$ and L[j,i] = 0 otherwise.

- For each $1 \le j \le \lfloor n/2 \rfloor$ all maximal abelian repetitions of period length j are computed in O(n): the j-th row of L is scanned in increasing order of the column index.
- clever computation of heads and tails.

 $\longrightarrow {\cal O}(n^2)$ offline computation of anchored runs

L for w = abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for w = abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for $\overline{w}= ext{abaabab} ext{aabbb}$

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for $\overline{w}= ext{abaabab} ext{aabbb}$

	a	b	a	a	b	а	b	а	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for w = abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for $\overline{w}= ext{abaabab} ext{aabbb}$

	a	b	а	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for $\overline{w}= ext{abaabab} ext{aabbb}$

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for w = abaababaabbb

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for w = abaababaabbb

	a	b	а	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

L for $\overline{w}= ext{abaabab} ext{aabbb}$

	a	b	a	a	b	a	b	a	a	b	b	b
	0	1	2	3	4	5	6	7	8	9	10	11
1	0	0	1	0	0	0	0	1	0	1	1	0
2	0	0	1	0	1	1	0	1	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0

- start with the Matsuda et al algorithm
- filter out anchored runs which are properly contained in another anchored run with the same period

solution: naming (giving an identifier for every period) assign to each factor of w an identifier so that 2 factors are abelian-equivalent iff their identifiers are equal

diff-representation

Idea				
	a	b	с	
w	0	0	0	
a	1	0	0	v[0] = 1
b	1	1	0	v[1] = 1
a	2	1	0	v[0] = 2
a	3	1	0	v[0] = 3
b	3	2	0	v[1] = 2
a	4	2	0	v[0] = 4
b	4	3	0	v[1] = 3
a	5	3	0	v[0] = 5
a	6	3	0	v[0] = 6
b	6	4	0	v[1] = 4
b	6	5	0	v[1] = 5
b	6	6	0	v[1] = 6

diff-representation

Idea					
	a	b	с		
w	0	0	0		
a	1	0	0	v[0] = 1	
b	1	1	0	v[1] = 1	
a	2	1	0	v[0] = 2	
a	3	1	0	v[0] = 3	
b	3	2	0	v[1] = 2	
a	4	2	0	v[0] = 4	
b	4	3	0	v[1] = 3	
a	5	3	0	v[0] = 5	
a	6	3	0	v[0] = 6	
b	6	4	0	v[1] = 4	
b	6	5	0	v[1] = 5	
b	6	6	0	v[1] = 6	

The diff-representations of all the factors of w can be computed in ${\cal O}(n^2)$ time.

Theorem [Kociumaka, Radoszewsji & Rytter, STACS 2013]

Given a sequence of vectors of dimension r represented using a diff-representation of size m, the integer vector equality problem can be solved in

- $O(m + r \log m)$ time deterministically
- O(m+r) time using a Monte Carlo algorithm

KRR2013

Given a string w of length n, all the abelian runs occurring in w, can be found in $O(n^2)$ -time (resp. $O(n^2 \log \sigma)$ -time) by an offline randomized (resp. deterministic) algorithm.

Given a string w of length n we designed:

- an online algorithm that finds all the abelian runs with period \mathcal{P} occurring in w in time O(n) and space $O(\sigma + |\mathcal{P}|)$
- an online algorithm that finds all the abelian runs with period \mathcal{P} such that $|\mathcal{P}| = p$ occurring in w in time O(np)
- an offline randomized (resp. deterministic) algorithm that finds all the abelian runs occurring in w in time $O(n^2)$ (resp. $O(n^2 \log \sigma)$)

Any idea on the number of abelian runs in a string?

Thank you for your attention