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Laurent Noé and Donald Martin

Navigating in a Sea of Repeats in RNA-seq Without Drowning 33
Gustavo Sacomoto, Blerina Sinaimeri, Camille Marchet, Vincent Miele, Marie-France Sagot and Vincent

Lacroix

An efficient method for correcting long PacBio reads 38
Leena Salmela and Eric Rivals

A seeding framework for lossless filtering for the approximate pattern matching problem 40
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Preface
The pluridisciplinary workshop SeqBio 2014 was held at the Campus Saint-Priest in Montpellier, France

on November 2014, 4th and 5th. It gathered computer science and bioinformatic communities working
on textual analysis methods and biologists and geneticists interested in sequence bioinformatics. The pro-
gramme includes talks selected on submissions and two invited talks by Laurent Bréhélin (LIRMM, CNRS
& Université Montpellier) and Sven Rahmann (University Essen, Germany).

Thanks to the financial support of GdR (working groups) BIM (BioInformatique Moléculaire) and IM
(Informatique Mathématique) of the CNRS, and of the project MASTODONS SePhHaDe, the participation
was completely free.

The problems tackled during SeqBio spread from combinatorics on words and text algorithmics to their
applications to bioinformatics analysis of biological sequences. This includes, without being restricted to,
the following topics:

– text algorithmics;
– indexing data structures;
– combinatorics and statistics on words;
– high performance or parallel algorithmics;
– text mining;
– compression;
– alignment and similarity search;
– pattern or repeat matching, extraction and inference;
– analysys of high throughput sequencing data (genomic, RNA-seq, Chip-seq, . . . );
– genome annotation, gene prediction;
– haplotypes and polymorphisms;
– comparative genomics;
– control signals.
This meeting comes after the following previous editions:
– Montpellier, November 2013;
– Marne-la-Vallée, November 2012;
– Lille, December 2011;
– Rennes, January 2011;
– Montpellier, January 2010;
– Rouen, September 2008;
– Marne-la-Vallée, September 2007;
– Orsay, November 2005;
– Lille, December 2004;
– Nantes, May 2004;
– Montpellier, November 2003;
– Nancy, January 2003;
– Rouen, June 2002;
– Montpellier, March 2002.
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– the University of Montpellier 2

Members:
– Caroline Benoist
– Manuel Binet
– Bastien Cazaux
– Elisabeth Gréverie
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Recherche de motifs de régulation à l’aide de données
d’expression
Laurent Bréhélin

Méthodes et Algorithmes pour la Bioinformatique (MAB)
Laboratoire d’Informatique Robotique et Microélectronique de Montpellier (LIRMM)
161 rue Ada
34095 Montpellier Cedex 5 - France

L’identification de motifs de régulation constitue l’une des plus anciennes problématiques de recherche en
bioinformatique, et de nombreuses méthodes ont été proposées. Les méthodes les plus classiques utilisent un
modèle de background probabiliste et cherchent des motifs sur-représentés au sens de ce modèle, dans un en-
semble prédéterminé de séquences. Plus récemment, de nouvelles approches utilisant des mesures d’expression
de gènes ont été proposées. Ces algorithmes cherchent des motifs dont la présence est corrélée à l’expression
des gènes. Un des avantages est que l’on s’affranchit alors de la nécessité d’un modèle de background. Après
un tour d’horizon général des approches proposées pour l’identification de motifs, je présenterai la méthode
RED2 qui guide sa recherche en utilisant la notion de densités de motifs dans l’espace d’expression.

http://www.atgc-montpellier.fr/RED2/

References
[1] M. Lajoie, O. Gascuel, V. Lefort, and L. Bréhélin. Computational discovery of regulatory elements in

a continuous expression space. Genome Biol., 13(11) :R109, Nov 27 2012.
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Reproducible High-Throughput Sequencing Data Anal-
ysis
Sven Rahmann

Genominformatik, Inst. für Humangenetik
Medizinische Fakultät
Universität Duisburg-Essen
Hufelandstr. 55
45122 Essen
Germany

and

Bioinformatik
Informatik XI
TU Dortmund
44221 Dortmund
Germany

The ever-increasing adoption of high-throughput sequencing technologies in many distinct medical, biological
and bio-technological applications has lead to the development of many different and individualised data
analysis processes (“pipelines”) in different labs. Initially, developing a new process requires trial and error,
including the evaluation of different tools and techniques and the optimisation of parameters, and a typical
pipeline changes more rapidly than it can be described in a typical “Material and Methods” section of a
publication. When a project is finished and a publication is accepted, a pipeline is often re-used in another
project and developed further. In the interest of reproducible science, it is important that, ideally, there is a
completely and formally specified process, from raw data such as FASTQ files, to finally published data, such
as tables and figures. This process can ideally be re-executed (with the appropriate software environment)
and reproduce the same results from the same raw data at any later time point. Several tools have been
developed to create, describe, store and execute complex data analysis workflows, for example the popular
Galaxy platform directed mainly at biologists. We found that bioinformaticians often require more powerful
tools and developed a domain specific programming language called “Snakemake” that is a hybrid between
Python and Make. It extends the Python language by data transformation rules from input files to output
files. Snakemake supports both multi-core and cluster environments. It allows to specify resource constraints
in the environment that are respected by the scheduler. In the talk I will present the motivation and design
decisions behind Snakemake, its main features, several NGS workflow examples, and some details of the
Python implementation. Snakemake has mainly been developed by Johannes Köster and is being used in
many different labs around the world.

References
[1] J. Köster and S. Rahmann. Building and documenting workflows with Python-based Snakemake. In

German Conference on Bioinformatics (GCB), volume 26 of OASICS, pages 49–56, 2012.
[2] J. Köster and S. Rahmann. Snakemake: a scalable bioinformatics workflow engine. Bioinformatics,

28(19):2520–2522, 2012.
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Transposable Elements Investigation Tool Applied to
Prokaryotic Genomes
Huda Al-Nayyef1,2, Christophe Guyeux1 and Jacques M. Bahi1

1 FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Université de Franche-
Comté, 16, Rue de Gray, 25000 Besançon, France
2 Computer Science Department, University of Mustansiriyah, Iraq

huda.al-nayyef@univ-fcomte.fr
christophe.guyeux@univ-fcomte.fr
jacques.bahi@univ-fcomte.fr

Transposable elements (TEs), which are DNA segments that have the ability to insert or copy themselves into
new chromosomal locations. In bacterial reign, only cut-and-paste mechanism of transposition can be found,
These types of mobile genetic elements (MGEs) involved in such a move being the insertion sequences (ISs).
Two main factors have big effects on IS discovery, namely: genes annotation and functionality prediction.
The authors have designed a novel pipeline for ISs detection, which embeds the most recently tools, namely
OASIS (Optimized Annotation System for Insertion Sequence) [1] and ISFinder database (an up-to-date
repository of known ISs) [2].

OASIS identifies ISs in each genome by finding conserved regions surrounding already-annotated trans-
posase genes. It takes as input NCBI genbank file with descriptive functionality. The main problem found
in it solved in our pipeline by designing two modules based on OASIS which is called NOASIS and DOASIS.
Our pipeline could be represented in the following steps:
Step 1: ORF identification. Our pipeline is currently compatible with any type of annotation tools,

having either functionality capability or not, but for comparison we focus on (BASys, Prokka, and
Prodigal).

Step 2: IS Prediction. Using either NOASIS or DOASIS for predicting IS elements. Notice that NOASIS
requires information about gene functionality by depending not only on NCBI, while DOASIS works
with or without gene functionality by modifying genbank files using the suggested methods:
1. All-Tpase: we consider that all the genes may potentially be a transposase. So all product fields

are set to “transposase”.
2. Zigzag Odd: we suggest that genes in odd positions are putative transposases and we update the

genbank file adequately. Oddly, this new path will produce new candidates which are not detected
during All-Tpase.

3. Zigzag Even: similar to Zigzag Odd, but on even positions.
Step 3: IS Validation. This step is realized by launching BLASTN on each predicted IS sequence with

ISFinder. The e-value of the first hit is then checked: if it is 0.0, then the ORF within this sequence
is a Real IS known by ISFinder. It will be considered as Partial IS if its e-value is lower than 10−10.
Both IS names of family and group are returned too.

A complete IS detection and classification pipeline has then been proposed and tested on a set of 23
complete genomes of Pseudomonas aeruginosa. This pipeline can also be used as an investigator of annotation
tools performance, which has led us to conclude that Prodigal is the suitable annotation tool for IS prediction
of prokaryotic. A deeper study regarding IS elements in P.aeruginosa has then been conducted, leading to
the conclusion that close genomes inside this species have also a close numbers of IS families and groups.
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Figure 1: Comparison between NOASIS and DOASIS

References
[1] D. G. Robinson, M.-C. Lee, and C. J. Marx. Oasis: an automated program for global investigation of

bacterial and archaeal insertion sequences. Nucleic Acids Research, 40(22):e174–e174, 2012.
[2] P. Siguier, J. Pérochon, L. Lestrade, J. Mahillon, and M. Chandler. ISfinder: the reference centre for

bacterial insertion sequences. Nucleic Acids Research, 34(suppl 1):D32–D36, 2006.
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Recherche de motifs dans des séquences similaires
Nadia Ben Nsira1,2, Thierry Lecroq2 and Mourad Elloumi1,

1 LaTICE, Université de Tunis El Manar, Tunisie
2 LITIS EA 4108, NormaStic CNRS FR 3638, IRIB, Université de Rouen, Normandie Université, France

Avec l’arrivée des nouvelles technologies de séquençage à haut débit (Next Generation Sequencing en anglais),
des quantités gigantesques de séquences génomiques d’individus de même espèce sont maintenant disponibles.

Ces séquences ne diffèrent que par de très petites quantités de variations et présentent un niveau de
similarité très élevé. Elles peuvent donc être représentées par une séquence de référence et un ensemble de
variations sur les autres séquences par rapport à cette séquence de référence. Il existe donc un fort besoin
d’algorithmes efficaces pour indexer et effectuer des recherches rapides dans ces ensembles spécifiques de
séquences dites fortement similaires. Dans certains cas on peut être amené à effectuer une recherche dans
ces données sans pouvoir les indexer (en cas de manque d’espace par exemple). Ainsi il doit être possible
d’effectuer une recherche incrémentale dans l’ensemble de ces séquences.

Nous avons conçu deux algorithmes de recherche exacte incrémentale d’un motif court dans un ensemble
de séquences fortement similaires. Les solutions proposées sont restreintes et supposent que les séquences ne
contiennent que des variations de type substitution. Les deux algorithmes utilisent une fenêtre glissante qui
parcourt simultanément l’ensemble de séquences du début jusqu’à la fin. La fenêtre a la même longueur que
le motif. Une tentative consiste à comparer le contenu de la fenêtre avec le motif.

Le premier algorithme suit une analyse étroite de l’algorithme de Morris-Pratt qui compare le contenu
de la fenêtre de gauche à droite. Le décalage de la fenêtre après chaque tentative est calculé en considérant
des bords du motif avec une distance de Hamming à 0 (décalage classique de Morris-Pratt) et des bords
avec une distance de Hamming à 1 (de manière à tenir compte des variations). La difficulté provient du fait
qu’un bord à distance 1 d’un bord à distance 1 peut être un bord à distance 2 et non pas 1 [2].

Le deuxième algorithme adapte une variante de l’algorithme de Boyer-Moore qui compare le contenu de
la fenêtre de droite à gauche. Le décalage est calculé en fonction de ré-occurrences de suffixes du motif avec
une distance de Hamming à 0 ou avec une distance de Hamming à 1 [1].

En pratique, nous avons comparé nos solutions avec des algorithmes de recherches exactes efficaces d’un
motif dans une seule séquence. Ces résultats montrent que nos solutions sont efficaces.

References
[1] N. Ben Nsira, T. Lecroq, and M. Elloumi. A fast pattern matching algorithm for highly similar sequences.

In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops
(BIBM 2014), 2014.

[2] N. Ben Nsira, T. Lecroq, and M. Elloumi. On-line string matching in highly similar DNA sequences. In
C. S. Iliopoulos and A. Langiu, editors, Proceedings of the 2nd International Conference on Algorithms
for Big Data (ICABD 2014), volume 1146 of CEUR Workshop Proceedings, 2014.
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Dynamic mappers of NGS reads
Karel Břinda, Valentina Boeva and Gregory Kucherov

Read mapping continuously belongs to hot topics in bioinformatics and the number of mappers released
every year is enormous. Differences between them are often only of technical nature and there is, up to
a few exceptions, a lack of conceptional algorithmical improvements. Eventually, only few well-developed
and debugged mappers are usually used in practice (e.g., BWA with its three separate mapping algorithms
[4, 5, 3], GEM [6], NovoAlign).

In spite of a great attention devoted to this topic, dynamic mapping, i.e., mapping with updating reference
in accordance to already mapped reads, has not been well-studied yet. The only texts on this topic are [2, 7]
and still, to the best of our knowledge, there has not been developed any real mapper supporting dynamic
updates until today in spite of the fact that they can provide a notable improvement in accuracy and
sensitivity. This situation is a consequence of the following facts.

Firstly, dynamic mappers bring several technical and algorithmic issues, e.g.:
1. Underlying data structures (FM indexes, hash-tables, etc.) must be dynamic. Updating them is a

non-trivial task (for dynamic FM index, see [8]) and implementations cannot be as memory-efficient
and cache-optimized as static versions of these data structures.

2. Expensive statistics about already mapped reads must be kept in memory during whole mapping.
3. Addressing in the reference must be somehow generalized because after every insertion and every

deletion, the coordinates of mapped reads change. Also, CIGAR strings are evolving during dynamic
mapping.

4. One must deal with remapping and unmapping already mapped reads.
Inevitably, these four points imply that the memory consumption will extensively increase while the

performance will decrease, in comparison to static mappers.
Secondly, dynamic mapping might be undoubtedly contributive for a limited class of applications when

speed can be sacrificed to sensitivity and selectivity (low number of reads, far reference, many hot spot
regions, etc.).

Besides the above mentioned approaches, static mapping and dynamic mapping, there exists an interme-
diate approach, a so-called iterative referencing [1], which is based on iterative repetition of “static mapping
of all reads” and “variant calling” until number of updates decreases below a given threshold.

In order to obtain data proving the superiority of dynamic mappers over static mappers, we developed
a pipeline simulating dynamic updates. Selected state-of-the-art mappers are used to map reads in small
batches followed by computation of statistics and update of the reference sequence. Dynamic mappers
should be capable to perform updates after mapping of each new read, and with batches small enough, we
can reach a good approximation of their behavior even with static mappers. The main difference from the
iterative referencing approach (with updates after the mapping of all reads and computationally intensive
algorithms for calling variants) resides in simplified algorithms for calling variants and small size of batches.
Improvements of alignments are measured using our newly developed evaluation program LAVEnder for the
DWGSim read simulator.

In our presentation, we will show first results obtained with this pipeline and state several conclusions
about the usefulness of the dynamic index approach.

References
[1] A. Ghanayim and D. Geiger. Iterative referencing for improving the interpretation of DNA sequence

data. Technical report, Technion, Israel, 2013. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/
tr-get.cgi/2013/CS/CS-2013-05.pdf.
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algorithm for mapping short reads to a dynamically changing genomic sequence. Journal of Discrete
Algorithms, 10:15–22, 2012.

[3] H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Technical
report, 2013. Preprint, arXiv:1303.3997.

[4] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioin-
formatics, 25(14):1754–1760, 2009.
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formatics, 26(5):589–595, 2010.
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From Indexing Data Structures to de Bruijn Graphs 1

Bastien Cazaux1, Thierry Lecroq2 and Eric Rivals1

1 L.I.R.M.M. & Institut Biologie Computationnelle, Université de Montpellier II, CNRS U.M.R. 5506, Mont-
pellier, France
2 LITIS EA 4108, NormaStic CNRS FR 3638, IRIB, Université de Rouen, Normandie Université, France

cazaux@lirmm.fr
thierry.lecroq@univ-rouen.fr
rivals@lirmm.fr

New technologies have tremendously increased sequencing throughput compared to traditional techniques,
thereby complicating DNA assembly. Hence, assembly programs resort to de Bruijn graphs (dBG) of k-mers
of short reads to compute a set of long contigs, each being a putative segment of the sequenced molecule.
Other types of DNA sequence analysis, as well as preprocessing of the reads for assembly, use classical data
structures to index all substrings of the reads. It is thus interesting to exhibit algorithms that directly build
a dBG of order k from a pre-existing index, and especially a contracted version of the dBG, where non
branching paths are condensed into single nodes. Here, we formalise the relationship between substringsx
trees/arrays and dBGs, and exhibit linear time algorithms for constructing the full or contracted dBGs.
Finally, we provide hints explaining why this bridge between indexes and dBGs enables to dynamically
update the order k of the graph.

References
[1] B. Cazaux, T. Lecroq, and E. Rivals. From indexing data structures to de Bruijn graphs. In Proceedings

of the 25th Annual Symposium on Combinatorial Pattern Matching (CPM 2014), pages 89–99, Moscow,
Russia, 2014.

1. This work is supported by ANR Colib’read (ANR-12-BS02-0008) and Défi MASTODONS SePhHaDe from CNRS
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Functional annotation of polymorphisms identified by
NGS approaches in P.falciparum
Ankit Dwivedi1, Emmanuel Cornillot1, Christelle Reynes2, Nimol Khim3, Didier Menard3, Roger Frutos4,
Eric Rivals5, Maxime Hebrard5 and Sylvain Milanesi6,

1 CPBS, IBC, UM1/UM2
2 Laboratoire de Physique Industrielle et traitement de l’Information - UM1
3 Institut Pasteur du Cambodge (IPC) - Phnom Penh - Cambodge
4 CPBS, UM2
5 IBC, LIRMM, UM1/UM2
6 IBC, UM1/UM2

ankit.dwivedi@cpbs.cnrs.fr
emmanuel.cornillot@univ-montp1.fr
christelle.reynes@univ-montp1.fr
knimol@pasteur-kh.org
dmenard@pasteur-kh.org
frutossmt@gmail.com
rivals@lirmm.fr
Maxime.Hebrard@lirmm.fr
sylvain.milanesi@lirmm.fr

Malaria is one of the most widespread parasitic infections in the world. The ongoing WHO Malaria
elimination program has resulted in decreased cases. These encouraging results are the issue of public
health policies and development of artemisinin based therapies. These approaches are now threatened by
the emergence of artemisinin resistant parasites. The development of resistant assay (RSA test, [3]) and
genetic markers (Kelch gene, [1]) enable us to better evaluate the prevalence of artemisinin resistant isolates
in Cambodia. Plasmodium falciparum is one the major causative agent of malaria in Cambodia. The focus
of this project is to identify drug resistant genes in the malaria parasite P.falciparum. It aims to identify
these genes using genome polymorphisms. We use a large datasets to analyse the distribution of parasite
population over the country. The set is based on NGS genome sequences available in ENA database. We
recover 167 genomes originating from four different localities in Cambodia. We describe a reliable SNP
variant calling pipeline from around 200 NGS genome sequences based on quantitative parameters provided
in the VCF files. SNPs were extracted and filtered after comparison with 3D7 reference genome. Different
tools like R, Perl and Artemis were used for the analysis. The major steps involved in the pipeline are, a)
The quantitative parameters provided in the variant calling format (VCF) files were analysed to define a
threshold to select good quality SNPs, b) SNPs were filtered based on MQ which represents the mapping
quality and DA (

�
ALT /

�
DP4) which represents the percentage of high quality ALT reads, c) SNPs with

low frequency and SNPs with uncertain ALT bases were not considered, d) Mapping was done to different
genome version and annotation information was provided for each SNP. These SNPs were then characterized
into three categories: non coding region, synonymous and non-synonymous. We differentiate SNPs associated
to the coding core and to the sub-telomeric regions of the genome. The large number of samples indeed
improves SNP extraction. The dataset obtained with the variant calling pipeline was compared to the other
published datasets and validated with the presence of marker SNPs. Recent studies provide evidence that
sub-populations of parasites are present in Cambodia [2]. We probe this hypothesis using SNP dataset
extracted with pipeline as described above. Different set of SNPs were tested to evaluate the robustness
of the sub-population including mutations in the Kelch gene that are being associated to the resistance to
artemisinin derivatives. This genetic marker is found in large numbers in the region of Pailin, where drug
resistance was first described. We provide genetic evidence for acquisition and transmission of artemisinin
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resistance in Cambodian parasite sub-populations. These results question the origin and the persistence of
these sub-populations. Fragmentation of the P. falciparum is important information that must be taken
into account for further statistical analysis of SNP distribution. Different approaches using bioinformatics
resources and SNP data will be established to identify features providing functional annotation for proteins,
pathways, isolates and sub-populations. These steps are essential to identify parasite sub-populations that
could be more susceptible to acquire and to transmit drug resistance in Cambodia.

References
[1] F. Ariey et al. Nature, 505(7481):50–55, 2014.
[2] O. Miotto et al. Nature Genetics, 45(6):648–655, 2013.
[3] B. Witkowski et al. Lancet Infect Dis., 13(12):1043–1049, 2013.
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Post-Alignment Visualization and Exploration of High-
Throughput Sequencing Experiments
Bernd Jagla1, Manuel Holtgrewe2 and Jean-Yves Coppeé1

1 Plate-forme 2 Transcriptome et Epigénome, Département Génomes & Génétique, Institut Pasteur, Paris,
France
2 Algorithmische Bioinformatik, Institut für Informatik, Freie Universität Berlin, Berlin, Germany

Abstract: The visual exploration of high-throughput sequencing experiments is largely limited to the
use of genome-browsers. These browsers present the sequencing profiles in the context of the reference
genome. We have decoupled the expression profiles from this constrain and present tools that allow for
the visual inspection and exploration of “regions of interest” outside of the context of the reference se-
quence. In the context of quality control we can visually inspect RNA-seq experiments within seconds
even for larger genomes. In addition, the visual exploration of NGS data proved to being useful in small-
RNA-seq experiments and others. We show how to apply this technology to quality control, miRNA
analysis, and transcription start site annotation/analyses. C++ version, R, and Galaxy integrations are
available through http://www.seqan.de/projects/ngs-roi/ and links therein. Development version can be
found at git-hub: https://github.com/baj12/seqan apps/. And the KNIME integration can be found here
http://tech.knime.org/community/next-generationsequencing and through the official update-site of KN-
IME.

1 Introduction
High throughput sequencing (HTS) platforms such as those from Illumina produce hundreds of millions of

reads. The quality of raw HTS data can be evaluated using basic statistics such as nucleotide or base quality
distributions (FASTQC, http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). In many experiments, the
HTS data is then aligned to a reference. For biological interpretation, data is then summarized as counts
per region (with a region being a gene, exon, transcript, etc) [4]. In addition to these tools specialized in
basic statistics, fitgcp [9] uses genome coverage profiles for metagenomic analyses. And [10] have shown that
coverage profiles can be used for comparison in genomic regions. RSeQC [15], for example, use coverage uni-
formity over the gene body as quality control measurement for transcript expression. All these publications
show the importance coverage profiles. The visual exploration though is largely limited to genome browsers
such as JBrowse [14] or IGV [12]. The tools presented here will aid in visualizing and utilizing coverage
profiles.

2 Region of Interest Analysis
Our analysis tools called, Regions Of Interest (ROI) Analysis, decouple the mapping results from a strict
linear ordering on the genome. Instead, regions on the genome are identified and considered as independent
objects for further analysis. In a first step, intervals of overlapping read alignments are considered as a region
of interest. The region is annotated with its locus, length, and the coverage over that region. The regions
can later be modified and redefined (e.g. by splicing intronic ROIs together to their transcript or mapping
to annotations from GFF formatted files), sorted, and filtered. We also provide software for visualization.
We define regions resulting from these processes as regions of interest (ROIs).
The concepts described here allow for the visualization and analysis of coverage profiles in regions of interest.
The ROIs are usually vectors of different lengths, thus they cannot be compared directly. To alleviate this
limitation we introduce metrics. Some of the more obvious metrics describe the length of an expression profile
or the coverage (mean, min, max, etc.). The distribution of these simple metrics can be used in the context
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of quality control to identify outliers. Figure 1a shows an example distribution of the properties “length” and
“normalized average coverage” (nac(region) = average(coverage(region))/max(coverage(region)), plotted in
log space for all ROIs.

3 Application
Profiles corresponding to high coverage may derive from either systematic errors or biologically relevant
processes. NGS experiments suffer from various biases due to the sequencing device [6, 13] or experimental
conditions (e.g. library construction, adapter sequences). Some of these artifacts can be identified and
removed by using existing software [5] or applying normalization procedures [4]. Yet, other errors can be
introduced during alignment. For example, [3] report biases towards the reference allele. A second type
of error comes from the fact that a sequence read can align to more than one region in the reference with
similar alignment scores. This can lead to sharp peaks where a short region of a highly expressed gene
occurs somewhere else in the reference. A third type of error can produce a peak in a profile on either
end of an otherwise poorly expressed gene in a non-directional RNA-Seq experiment. This could result
from two overlapping genes that are located on opposite strands with very different expression levels. The
tools presented here help identifying such regions by grouping them together and allowing for a visual and
algorithmic analysis.
When visualized using a genome browser, the coverage is only available in the genomic context. When
a certain feature or problem is identified in the coverage profiles of the human genome, it is practically
impossible to search the 3 billion sequence positions to identify similar profiles. Given a metric that describes
features they, too, can be analyzed with the given tools.
The concept of ROIs can also be used in circumstances where biological processes produce patterns. One
such example is the biogenesis of miRNAs [2]. miRNAs are translocated as pre-miRNA from the nucleus
into the cytosol where they are further processed into a miRNA/miRNA* duplex and then separated into
miRNA and miRNA*, of which the miRNA* will be degraded. This process can be seen in the profile of
an RNA-Seq experiment. Figure 1b shows such a profile. In case the profile comes from a non-annotated
region (this can be easily achieved by applying the appropriate annotation to the ROIs) this would indicate
a potential novel miRNA. A link is associated with this plot that opens a defined genome browser at that
particular location of the genome (Fig. 1c). Given the output of a miRNA prediction tool the potential
miRNAs could sorted by relevance and visualized with the associated expression pattern.
Other alignment patterns may rise from special experimental conditions like the ones used in transcription
start site mapping experiments or CHiP-Seq experiments [11]. The difficulty then is to define the correct
metrics that capture the essence of the question. The visual representation in form of a HTML web-page
allows evaluating such metrics in an efficient way. Once these metrics are established, unknown regions
can be easily identified using the tools at hand. This also opens the door for applying supervised and
unsupervised machine learning technologies for the discovery of new features. We are currently investigating
such possibilities for quality control purposes and new biological interpretation of the data.
In principle, ROIs are not limited to coverage data. They could also hold information like GC content, or
any other numerical value that can be assigned to a sequence position within the given reference genome.
Tools provided
bam2roi: create ROI file from sam/bam formatted alignment file
roi feature projection: map ROIs onto features from a BED/GFF formatted annotation file.
roi plot thumbnails.py: create a HTLM overview page showing a PNG image with a collection of ROIs.
roi table.py: create a HTML file with a table containing a picture of an ROI and the associated metrics.
roi report.py: creates a HTML file with summary graphs of the metrics and their summary statistics.
Libraries for importing/exporting ROIs using R, Python, Galaxy, KNIME.
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Figure 2: Properties of ROIs. (a,b,c) ROI information of a small RNA experiment from the European
Nucleotide Archive (SRR618933). (a) The properties “length” and “normalized average coverage (nac) are
plotted in log space for all ROIs; the density of points is represented by color, where dark red/violet represents
large amounts and light cyan represent low counts. (b) Example ROIs of a miRNA (FBgn00262412) (b). (c)
Hyperlinks give access to further information on a genome browser. Green lines indicate where the different
images correspond to each other.
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We study strategies of approximate pattern matching that exploit bidirectional text indexes, extending and
generalizing ideas of [2]. We introduce a formalism, called search schemes, to specify search strategies of this
type, then develop a probabilistic measure for the efficiency of a search scheme, prove several combinatorial
results on efficient search schemes, and finally, provide experimental computations supporting the superiority
of our strategies.

Consider approximate string matching, where k letter mismatches are allowed between a pattern P and
a text T . Both forward and backward searches can be extended to approximate search in a straightforward
way, by exploring all possible mismatches along the search, as long as their number does not exceed k and
the current pattern still occurs in the text. Our current results have been obtained under the assumption of
Hamming distance, but our techniques can be extended to the edit distance, which is the subject of ongoing
work.

Lam et al. [2] gave a new search algorithm, called bidirectional search, that utilizes the bidirectional
property of the index. The idea is to partition the pattern P on k+1 parts of almost equal size, and perform
a sequence of searches, that cover all possible distributions of mismatches among the parts.

Our contribution consists of the following. First, we provide a general framework for working with search
schemes and a theoretical tool to measure their efficiency. Second, we prove several facts about properties
of optimal partitions. Third, we suggest two ideas that improve search schemes performance: using uneven
partitions instead of partitions of equal-sized parts, and partition the pattern into more than k + 1 parts
(k + 2, k + 3, etc).

We demonstrate the superiority of our search strategies, for many practical parameter ranges, by both
comparative analytical estimations based on our probabilistic analysis, and by large-scale experiments on
real genomic data.
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Dans les protéines de type récepteur seuls quelques acides aminés déterminent le site actif. La protéine
HLA-DRB1 est associée à plusieurs maladies auto-immunes dont la polyarthrite rhumatöıde (PR). Parce
que certains des allèles de cette protéine sont plus associés que d’autres, on pense qu’un ligand se fixe
sur eux déclenchant la maladie. Pour déterminer sans a priori le motif en acides aminés du site actif de
HLA-DRB1, plusieurs méthodes existent et reposent sur l’utilisation de données cas-témoins. Une première
méthode consiste à générer une séquence consensus d’acides aminés à partir des allèles HLA-DRB1 associés à
la maladie. C’est par une telle méthode et en se focalisant sur la troisième région hypervariable des molécules
HLA-DRB1 que l’hypothèse de l’épitope partagé dans la PR a été proposée par Gregersen et coll. (1987).
Une autre méthode s’appuie sur des modèles de régression logistique pas à pas et appliquée à la PR a
permis de mettre en évidence l’implication possible d’autres acides aminées que ceux de la troisième région
hypervariable dans la susceptibilité à la PR (Raychaudury et al., 2012). Enfin, dans un article plus récent,
Zhao et Wang (2013) ont proposé une méthode de regroupement récursif des allèles HLA-DRB1 basée sur
les similarités de séquences et leurs différences de distribution entre cas et témoins qui permet d’identifier
ce qu’ils appellent des SSV ou � Super Sequence Variants � associés à la maladie. Nous présentons une
nouvelle méthode de recherche de motifs protéiques basée sur des données cas-témoins que nous avons
baptisée MoBiDiCC pour � Motif Binding Discovery in Case-Control data �. Cette méthode repose sur
plusieurs étapes. Dans la première étape, nous appliquons une approche par force brute pour identifier à
partir de tous les allèles HLA-DRB1 présents dans l’échantillons tous les motifs possibles, c’est à dire toutes
les combinaisons des séquences des allèles. Puis, nous utilisons les données cas-témoins pour attribuer un
score à chacun des motifs qui dépend des différences de fréquences entre malades et témoins. Ensuite, nous
construisons un graphe de dépendance entre ces motifs et nous identifions des scores maximums locaux,
révélateurs des motifs potentiellement actifs. Nous avons procédé à des simulations faisant varier les motifs,
la prévalence de la maladie et le risque associé à chaque motif et le nombre de motifs actifs afin de valider
notre approche et de la comparer aux deux autres méthodes proposées dans la littérature. Nous montrons
que notre approche permet de trouver plus souvent le bon motif que les autres méthodes. Lorsque plusieurs
motifs sont associés à la maladie, MoBiDiCC est la seule des trois méthodes qui permet de les identifier. Enfin,
si nous nous sommes intéressés dans un premier temps aux molécules HLA-DRB1, la méthode MoBiDiCC
est implémentée dans un programme flexible qui pourra à terme être étendu à l’étude d’autres systèmes
protéiques.
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Abstract: Recent research reveals that personalized medicine is one major way to treat cancer. In order to
develop personalized medicine, characterizing the genomic alterations is a vital component. Several methods
have been proposed to this end. One of the first methods is the Genome Alteration Print (GAP) by Popova et
al.. We follow this approach and develop a parametric probabilistic model for GAP, based on a preliminary
segmentation of SNP measurements obtained from microarray experiments. Moreover we implement the
expectation-maximization (EM) algorithm to estimate the parameters of our model that characterize the
genomic alterations. Finally, the model is tested on simulated data and real data.
Keywords: cancer, EM algorithm, genomic alterations, GAP, SNP

Recent research reveals that personalized medicine is arguably one major way to treat cancer because
of, for example, the immense diversity of underlying genomic alterations. In order to develop personalized
medicine, characterizing the genomic alterations is a vital component. One way to characterize this alteration
is to use a Single Nucleotide Polymorphism (SNP) microarray. A SNP is a nucleotide showing variability
in the population. In theory, there are four possible variations, however, in practice, only two variations
are observed which are called A-allele and B-allele, one being common in more than 90% of the population.
Since the chromosomes in human come in pairs, it is possible for a SNP to have the genotype AA, BB, AB,
or BA. The two former cases are called homozygous SNP, and the two latter, which are indistinguishable,
are called heterozygous SNP. If in the population, the proportion of the major allele for a SNP is h, the
probability for this SNP to be homozygote is q = 1 − 2h(1 − h).

Using microarrays one can detect genomic alterations such as copy-number variation and allele-imbalance.
Having at hand two microarrays, one for the tumor, the other for the normal tissue, one can get rid of the
unknown proportion p of normal tissues in the tumor sample which acts as a confusing parameter in the
tumoral alteration characterization. However, clinicians are expecting to retrieve this information from only
a single tumor sample microarray. Several methods have already been developed for this goal. GenoCNA[4],
OncoSNP[6], and GPHMM[1] employ a Hidden Markov Model (HMM) integrating both segmentation and
mutation characterization in a single step. GAP[3] and ASCAT[5] adopt a two-step approach in which
the data are first segmented and then the mutation types are estimated. Both methods are based on an
optimization step with respect to p of a deterministic quality criterion. Taking into account allelic imbalance
and copy number aberration, the criterion used in ASCAT[5] measures a weighted discrepancy based on
several heuristics. Noticing that, for a given p, the possible mutations are precisely localized in the plane
(BAF, LRR), the GAP[3] criterion is defined as the number of segmented observations that are close to these
locations within a predefined proximity value. In [2], a comparison of these methods has been performed,
showing that, the two-step approaches have better performance.

Using the mutation localization in the plane (BAF, LRR) as introduced in [3], we develop a probabilistic
model to estimate statistically the parameters and the mutation types of each segment. Our method uses
an optimization with respect to p of a criterion which can easily be understood from a probabilistic point-
of-view as it is the likelihood of our model, together with the estimation of the other parameters such as
the variances of the observations. Moreover, our approach does not use any heuristic or any given tuning
parameter. We expect our strategy to be not only satisfying from a mathematical point-of-view but also
bring to the clinicians the expected probabilistic model for mutations.
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For a SNP, microarray measures the intensities IA and IB of the two alleles which are proportional to
the number of copies nA and nB of the two alleles (IA = knA, IB = knB). From the two intensities, it is
possible to derive two variables characterizing the copy-number and the allele imbalance of the SNP

lrr = log2

�
IA + IB

IRef

�α

= α log2 (CN) + β, baf = IB

IA + IB
= nB

nA + nB
,

where CN = nA + nB is the copy-number, α the contraction factor due to experimental techniques and
β = α log2 (k/IRef ). By definition, baf is bounded between 0 and 1. Assume that the proportion of normal
tissues is p in the biopsy and that the tumor cells have (nA = k, nB = l) as mutation genotype, then for
heterozygous SNP we have

lrr = α log2 (2p+ (1 − p)(k + l)) + β, baf = (p+ l(1 − p))/(2p+ (k + l)(1 − p)).

Measurement values are noisy and we observe on SNP m

LRRm = lrrm + ηξm, BAFm = bafm + σεm

where ξm and εm are independent standard random variables that we will assume Gaussian, and η and σ
two positive real numbers. We assume that σ and η do not depend on the SNP. In the following, we assume
that α = 1 and β = 0 as a first approximation. Genomic alterations occuring on intervals of the genome,
the two distributions of bafm and lrrm can be considered piecewise constant as m varies. Hence mutation
characterization can be realized from a proper segmentation of the two distributions. Following [3, 5], we
assume these segmentations already realized and we focus on the characterization part of the mutations. On
each segment, the BAF values are mirrored around 0.5, so we confine ourselves to the range of [0.5, 1] by
symmetry. On segment i of lengths Ii, we observe

BAF 0
i = baf0

k + ε0
i

σ�
Ii(1 − q)

, BAF 1
i = baf1

k + ε1
i

σ√
Iiq

, LRRi = lrrk + ξi
η√
Ii

,

obtained by averaging over the segment. Here BAF 0
i is the heterozygous BAF with a relative weight of 1−q,

BAF 1
i the homozygous BAF with a relative weight of q, and LRRi the LRR of the segment. The integer

k is the class label indicating the underlying mutation type of the segment. ε0
i , ε1

i and ξi are independent
standard Gaussian random variables. Taking into account the heterozygosity and homozygosity, we split the
interval observation into two weighted sub-observations (BAF 0

i , LRRi) with weight 1−q and (BAF 1
i , LRRi)

with weight q. These split observations can be mapped into the plane of (baf, lrr) where (baf0
k , lrrk) and

(baf1
k , lrrk) have fixed positions only defined by p and the underlying mutation.

We define a mixture model for the split observations and introduce the component indicators zik with
i = 1, 2, . . . , n (n the number of segments) and k = 1, 2, . . . ,K (K number of considered mutations). Its
value is 1 if the observation is emitted from the underlying mutation k. Our model is a Gaussian mixture
model in the plane of (BAF,LRR) with observations (BAFi, LRRi) and known parameters Ii and q, the
latter assumed to be known and constant for all segments. The parameters to estimate are: p the proportion
of normal tissues, η the standard deviation of LRR, and σ the standard deviation of BAF . The parameter
p is tricky to infer simultaneously with the other parameters, hence we use a two-level strategy: for a given
p, we implement an EM algorithm to estimate the other parameters and then use gradient descent method
to find the optimal value of p. We tested our implementation on simulated data where the estimation agreed
well with the parameters used to generate the data. As a result, we can retrieve the mutation of any given
interval as the most probable. Moreover, one has at hand the probability distribution of the mutations for
each interval. Possible extensions of our strategy include the direct use of un-split observations.
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Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate
measure of phylogenetic distances [2, 4, 3], and to provide a lower misclassification rate when used with
Support Vector Machines (SVMs) [7], We confirm by independent experiments these two results, and propose
to use a coverage criterion [1, 5, 6], to measure the seed efficiency in both cases in order to design better
seed patterns. We show first how this coverage criterion can be directly measured by a full automaton-
based approach. We then illustrate how this criterion performs when compared with two other criteria
frequently used, namely the single-hit and multiple-hit criteria, through correlation coefficients with the
correct classification/the true distance. At the end, for alignment-free distances, we propose an extension
by adopting the coverage criterion, show how it performs, and indicate how it can be efficiently computed.

More details can be found at http://bioinfo.lifl.fr/yass/iedera.php#iedera coverage
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Abstract: The main challenge in de novo assembly of NGS data is certainly to deal with repeats that
are longer than the reads. This is particularly true for RNA-seq data, since coverage information cannot
be used to flag repeated sequences, of which transposable elements are one of the main examples. Most
transcriptome assemblers are based on de Bruijn graphs and have no clear and explicit model for repeats in
RNA-seq data, relying instead on heuristics to deal with them. The results of this work are twofold. First,
we introduce a formal model for representing high copy-number repeats in RNA-seq data and exploit its
properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem
of identifying in a de Bruijn graph a subgraph with this characteristic is NP-complete. In a second step, we
show that in the specific case of a local assembly of alternative splicing (AS) events, using our combinatorial
characterization we can implicitly avoid such subgraphs. In particular, we designed and implemented an
algorithm to efficiently identify AS events that are not included in repeated regions. Finally, we validate our
results using synthetic data. We also give an indication of the usefulness of our method on real data. 2

1 Introduction
Transcriptomes can now be studied through sequencing. However, in the absence of a reference genome, de

novo assembly remains a challenging task. The main difficulty certainly comes from the fact that sequencing
reads are short, and repeated sequences within transcriptomes could be longer than the reads. This short
read / long repeat issue is of course not specific to transcriptome sequencing. It is an old problem that has
been around since the first algorithms for genome assembly. In this latter case, the problem is somehow
easier because coverage can be used to discriminate contigs that correspond to repeats, e.g. using Myer’s
A-statistics [4] or [5]. In transcriptome assembly, this idea does not apply, since the coverage of a gene does
not only reflect its copy-number in the genome, but also and mostly its expression level.

Initially, it was thought that repeats would not be a major issue in RNA-seq, since they are mostly in in-
trons and intergenic regions. However, the truth is that many regions which are thought to be intergenic are
transcribed [1] and introns are not always already spliced out when mRNA is collected to be sequenced. Re-
peats, especially transposable elements, are therefore very present in real samples and cause major problems
in transcriptome assembly.

In the method we developed, KisSplice, which is a local transcriptome assembler [6], repeats may be
less problematic, since the goal is not to assemble full-length transcripts. KisSplice instead aims at finding
variations expressed at the transcriptome level (SNPs, indels and alternative splicings). However, as we
previously reported in [6], there are certain complex regions in the graph, likely containing repeat-associated
subgraphs but also real AS events [6], where KisSplice takes a huge amount of time. The enumeration of
AS events is therefore halted after a given timeout. The AS-events drowned (or trapped) inside these regions
are thus missed by KisSplice.

Here, we try and achieve two goals: (i) give a clear formalization of the notion of repeats with high
copy-number in RNA-seq data, and (ii) based on it, give a practical way to enumerate bubbles that are lost
because of such repeats. Recall that we are in a de novo context, so we assume that neither a reference
genome/transcriptome nor a database of known repeats, are available.

2. The results presented in this extended abstract have been published in WABI 2014, LNCS vol 8701, 82-96.
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2 Repeats in de Bruijn graphs
A k-mer is a sequence s ∈ {A,C, T,G}k. Given a set of sequences (reads) R and an integer k, the

directed de Bruijn graph Gk(R) = (V,A) is such that V and A are the set of all distinct k-mers and k + 1-
mers respectively, that appear as a substring in R. An arc (u, v) ∈ A is called compressible if the out-degree
u and the in-degree of v are equal to 1.
Simple uniform model for repeats: Our model consists of several “similar” sequences, each generated
by uniformly mutating a fixed initial sequence. The model has then the following parameters: the length n of
the repeat, the number m of copies of the repeat, an integer k, and the mutation rate, α, i.e. the probability
that a mutation happens in a particular position. We first choose uniformly at random a sequence s0 of
length n. At step i ≤ m, we create a sequence si by mutating each position of s0 with probability 1 − α.
Repeating this process we create a set S(m,n, α) of m such sequences from s0. The generated sequences
thus have an expected Hamming distance of αn from s0.

This model is a simple one but is realistic enough in some real cases. In particular, it enables to model
well recent invasions of transposable elements which often involve high copy-number and low divergence rate.

The next result shows that the number of compressible arcs is a good parameter for characterizing a
repeat-associated subgraph.

Theorem 1 Given integers k, n,m with k < n and a real number 0 ≤ α ≤ 3/4, consider S(m,n, α) and let
R be a set of m sequences randomly chosen then:

— The expected number of compressible arcs in Gk(S(m,n, α)) is ø(mn).
— The expected number of compressible arcs in Gk(R) is Θ(mn)

Based on this, a natural formulation to the repeat identification problem in RNA-seq data is to search for
large enough subgraphs that do not contain many compressible arcs. Unfortunately, the next result shows
that an efficient algorithm for the repeat identification problem based on this formulation is unlikely.

Theorem 2 Given a directed graph G and two positive integers m, t, it is NP-complete to decide whether
there exists a connected subgraph G� = (V �, E�), with |V �| ≥ m and having at most t compressible arcs. It
remains NP-complete even for subgraphs of de Bruijn graphs on 4 symbols.

3 Bubbles “drowned” in repeats
KisSplice [6] is a method for de novo calling of AS events through the enumeration of so-called bubbles,

that correspond to pairs of vertex-disjoint paths in a de Bruijn graph. However, we showed in [6] that
some bubbles were missed by KisSplice because they were “drown” in a complex region of the graph. See
Fig. 3 for an example of a complex region with a bubble corresponding to an AS event. We saw that the
repeat-associated subgraphs are characterized by the presence of few compressible arcs. This suggests that
in order to avoid repeat-associated subgraphs, we should restrict the search to bubbles containing many
compressible arcs. Equivalently, in a compressed de Bruijn graph, we should restrict the search to bubbles
with few branching vertices. Indeed, in a compressed de Bruijn graph, given a fixed sequence length, the
number of branching vertices in a path is inversely proportional to the number of compressible arcs of the
corresponding path in the non-compressed de Bruijn graph. We thus modify the definition of (s, t, α1, α2)-
bubbles in compressed de Bruijn graphs (Def. 1 in [7]) by adding the extra constraint that each path should
have at most b branching vertices. By modifying the algorithm of [7] we have the following:

Theorem 3 The (s, ∗, α1, α2, b)-bubbles can be enumerated in O(b|V |3|E||Bs(G)|) time. Moreover, the time
elapsed between the output of any two consecutive solutions (i.e. the delay) is O(b|V |3|E|).
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Figure 3: An alternative splicing event in the SCN5A gene (human) trapped inside a complex region, likely containing
repeat-associated subgraphs, in a de Bruijn graph. The alternative isoforms correspond to a pair of paths shown in red and
blue.

4 Experimental results
To evaluate the performance of our method, we simulated RNA-seq data using the FluxSimulator

version 1.2.1 [3]. We generated 100 million reads of 75 bp using the default error model. We used the RefSeq
annotated Human transcriptome (hg19 coordinates) as a reference and we performed a two-step pipeline
to obtain a mixture of mRNA and pre-mRNA (i.e. with introns not yet spliced). We tested two values:
5% and 15% for the proportion of reads from pre-mRNAs. Those values were chosen so as to correspond
to realistic ones as observed in a cytoplasmic mRNA extraction (5%) and a total (cytoplasmic + nuclear)
mRNA extraction (15%) [8].

On these simulated datasets, we ran KisSplice [6] versions 2.1.0 (KsOld) and 2.2.0 (KsNew, with
a maximum number of branching vertices set to 5) and the full-length transcriptome assembler Trinity
version r2013 08 14 [2].

We showed that KsNew improves by a factor of up to 2 the sensitivity of the previous version of
KisSplice, while also improving its precision. Concerning the comparison with Trinity we showed that
for the specific tasks of calling AS events, our algorithm is more sensitive, by a factor of 2, while also being
slightly more precise (see Fig. 4).

Finally, we gave an indication of the usefulness of our method on real data where we have examples of
AS-events not found by KsOld.
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PacBio Single Molecule, Real Time sequencing is a third generation sequencing technique producing long
reads with comparatively lower throughput and higher error rate. Errors include numerous indels and
complicate downstream analysis like mapping or de novo assembly. A hybrid strategy that takes advantage
of the high accuracy of Second Generation short reads has been proposed for correcting long reads. Mapping
of short reads on long reads provides sufficient coverage to eliminate up to 99% of errors, however at the
expense of prohibitive running times and considerable amounts of disk and memory space. We present
LoRDEC, a hybrid error correction method that builds a succinct de Bruijn graph representing the short
reads, and seeks a corrective sequence for each erroneous region in the long reads by traversing chosen paths
in the graph. In comparisons, LoRDEC is at least six times faster and requires at least 93% less memory
or disk space than available tools, while achieving comparable accuracy. LoRDEC software is available on
the ATGC platform (http://www.atgc-montpellier.fr/lordec). A more complete description of this work is
available in [1].
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Introduction
Let A be a finite alphabet. Given two strings u and v of A∗, define lev(u, v) to be the Levenshtein distance

between u and v. This is the minimum number of operations needed to transform u into v, where the only
allowed operations are substitution of a single character and deletion or insertion of a single character. Each
such operation is also called an error. From now on, we assume that a given natural number k corresponds
to a maximum number of errors.

The approximate pattern matching problem is to find all the locations where a pattern matches a text
with at most k errors. This problem has been extensively studied in the literature. Navarro et al distinguish
three main approaches [3]: neighborhood generation, partitioning approach and hybrid method. Here, we
present a method that lies in the third case, and that uses a new kind of lossless approximate seeds.

01∗0 seeds
The main idea is as follows. Let P be a pattern over A. Using the pigeonhole principle, it is well-known

that if P is partitioned into k + 1 parts, then every string U , such that lev(P,U) ≤ k, contains at least one
of these parts. Similarly, if P is partitioned into k + 2 parts, denoted P1, . . . , Pk+2, then U should contain at
least two disjoint parts of P . The following lemma allows to push the analysis further. It is indeed possible
to request that these two parts be separated by parts with exactly one error.

Lemma 1 Let U be a string of A∗ such that lev(P,U) ≤ k. Then there exists i, j, 1 ≤ i < j ≤ k + 2, and
U1, . . . , Uj−i−1 of A∗ such that

1. PiU1 . . . Uj−i−1Pj is a substring of U , and
2. When j > i+ 1, for each �, 1 ≤ � ≤ j − i − 1, lev(Pi+�−1, U�) = 1.

As a consequence of Lemma 1, we can design a seeding framework for lossless filtering for the approximate
pattern matching problem with k errors. To this end, we introduce the 01∗0 seeds defined as follows.

Definition 1 Let P = P1 . . . Pk+2 be a pattern divided into k + 2 parts. Then the 01∗0 seed for P and k is
the regular expression

∪k+1
i=1 ∪k+2

j=i+1 Pi lev
1(Pi+1) . . . lev1(Pj−1) Pj

where lev1(u) denotes the set of strings whose Levenshtein distance with u is 1.

1. This work was partly supported by the Mastodons project (CNRS).
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Empirical measurements show that the 01∗0 seed is significantly more selective than exact seeds, such
as q-grams. Of course, this higher selectivity comes at the price of some additional work to locate seeds in
the text. However, the fact that errors are not randomly distributed within the seed drastically reduces the
combinatorics.

Application to approximate pattern matching
We implemented our strategy using a full-text index (namely a FM-index [1]). For details on the search

method using a FM-index, the reader should report to the full paper [5].
We measured the performance of our implementation (called Bwolo 2) to a selection of tools chosen for

their complementarity (indexed or not, using different approximate string matching approaches): Exoner-
ate [4], RazerS3 [6], Bowtie2 [2]. We searched for short patterns in random texts and in DNA sequences with
two or three errors at full sensitivity for each software. On our tests, Bwolo is faster by an order-of-magnitude
than its counterparts, but uses a similar amount of memory.

Conclusion
The new 01∗0 seeds we introduced achieve a good balance between the filtration step and the verification

effort. We have developed a full application that implements the approximate pattern matching problem
with an index for the text. It could also be interesting to preprocess the patterns when dealing with a large
number of them. On the contrary, we could also get rid of the index and make the filtration algorithm online.
Finally, albeit having been beyond the scope of this paper, an important aspect to thoroughly analyze would
be the average case of our algorithm.
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Abstract: Recent technological advances are allowing many laboratories to sequence their research organisms.
Available de novo assemblers leave repetitive portions of the genome poorly assembled. Some genomes contain
very high proportions of transposable elements, and transposable elements appear to be a major force behind
diversity and adaptation. Few de novo assemblers for transposable elements exist, and most have either been
designed for small genomes or 454 reads.

In this paper, we present a new transposable element de novo assembler, Tedna, which assembles a set of
transposable elements directly from the reads. Tedna uses Illumina paired-end reads, the most widely used
sequencing technology for de novo assembly, and forms full length transposable elements.

Tedna is available from http://urgi.versailles.inra.fr/Tools/Tedna, under the GPLv3 license. It is written
in C++11 and only requires the sparsehash package, freely available under the New BSD License. Tedna
can be used on standard computers with limited RAM resources, although it may also use large memory for
better results. Most of the code is parallelized, and thus ready for large infrastructures.

Introduction
Most laboratories can now afford sequencing a genome and several de novo whole genome assemblers,

such as Velvet [10], are available to assemble even large genomes. However, these assemblers usually do not
assemble the transposable elements: current algorithms cannot correctly assemble highly repeated sequences.
On the other hand, transposable elements can comprise to more than 90% of a genome, and their role in the
evolution of the host genome has been often underlined [1].

Whereas assembling the copies (i.e. the traces of transposable elements, scattered along the genome,
often strongly mutated) is usually impossible, assembling the transposable elements (a model of the first
element that invaded the genome, reconstructed from the observable copies [3]) is a simpler task. Several de
novo transposable elements assemblers have been presented so far, but most have been designed for small
genomes [8], or assume that the 454 technology have been used [5, 6]. Only RepeatExplorer [7] currently
exploits Illumina reads. Here, we present new a tool that reads Illumina paired-end reads, arguably the most
widely used sequencing technology for de novo assembly, and provides a list of repeated elements.

A transposable element de novo assembler is somewhat different from a genome assembler: it assembles
sequences from multiple copies, which have evolved through time. A transposable elements assembler should
thus correctly handle polymorphism, including long insertions and deletions. Basically, every copy gives a
hint about what the transposable element should be, but only the comparison with other copies —and the
construction of a consensus— may help building the transposable element. As such, de Bruijn graphs, used
by many assemblers, seem well-fitted for this purpose: a k-mer of a copy may be part of the consensus trans-
posable element, whereas other parts of the copy may not. Transposable elements may thus be assembled as
a set of highly repeated k-mers. Tedna is the first tool that uses a de Bruijn graph for transposable element
assembly.

1 Results and Conclusion
We compared Tedna with the transposable element assembler RepeatExplorer, and the two other widely

used assemblers: Velvet, for genome assembly, and Oases, for transcriptome assembly [9].
We first benchmarked the tools on the 5143bp long copia element, present in Drosophila melanogaster.

We extracted all the copies annotated as copia by the REPET pipe-line [2], cut them into reads, and mixed

32



data set tool # seq. sen. spe. avg. max. size
wheat RepeatExplorer 982 35% 78% 6%

Velvet 836 2% 6% 1%
Oases 6505 33% 37% 13%
Tedna 1365 38% 66% 11%

A. thaliana RepeatExplorer 160 3% 14% 2%
Velvet 67,615 73% 2% 42%
Oases 1963 41% 38% 30%
Tedna 1263 24% 26% 17%

Table 1: Comparison of the tools (sens.: sensitivity, spe.: specificity).

them with random reads. We thus produced 100,000 paired-ends reads, of size 2 × 100. Copia is an
LTR-retrotransposon, and thus has long LTRs. With the best parameters of Velvet, we had a 4709bp long
element, where the low complexity region, in the center of the element, is poorly assembled. Moreover,
the predicted element is the concatenation of the 3’ end of the element, one LTR, and the 5’ end. The
longest element of Oases is 5857bp long, longer than the actual element because Oases duplicates both
LTRs. With other parameters, Oases predicts a 4912bp long element, similar to the element predicted by
Velvet. Tedna correctly predicts an element with 99% identity when compared to the known element. The
predicted element is somewhat shorter (5049 vs 5143bp) because the predicted LTRs are slightly too short,
and the low complexity region is not accurately assembled. The three tools needed less than a minute to
produce the assembly. RepeatExplorer produced an internal error, probably because it expects more reads.
This shows that a transposable element can be reconstructed from its copies with a de Bruijn graph on the
most frequent k-mers.

We then tested Tedna by assembling sequence data generated for the wheat genome, 90% of which
is comprised of repetitive elements. We used the unassembled reads (size 2 × 100bp) produced by the
International Wheat Genome Sequencing Consortium for wheat chromosome arm 3AL (to be published),
and a manually curated library of 335 wheat transposable elements (Josquin Daron, to be published). We
finally compared Tedna on an Arabidopsis thaliana resequencing project, available from SRA under code
SRR616966, which contains 2 × 100 paired-end reads and an insert size of 500bp. We used the A. thaliana
RepBase data [4] as reference, which contains 390 transposable elements.

For the two latter data sets, we gave the number of putative transposable elements given by each tool,
as well as their sensitivity and specificity in Table 1. For each reference transposable element, we computed
the size of the longest predicted fragment, and expressed it as a ratio of the reference transposable element
size (100% would be a predicted full length element). The average ratio size is given in the last column.
The wheat data set shows that Tedna has the best sensitivity, and a good specificity (although not as good
as RepeatExplorer). When ranked by size of fragments, Tedna is the second best. Oases performs well
because it also contains dedicated algorithms for merging contigs into full length transcripts, and it handles
read coverage better than Velvet (which expects uniform coverage). The A. thaliana data set is clearly
favorable to Oases, which gives almost everywhere the best results. The only exception is the fragment size,
where Velvet performs better. This is a usual trade-off between specificity, which is very low for Velvet, and
accuracy. This results suggest that Tedna performs better when used on genomes with high transposable
element density, which is observed in most higher eukaryotes.

We then detailed the results given by Tedna for each major transposable element class of A. thaliana.
Results vary greatly, and there is no clear reason why the DNA transposons are better assembled than
other elements. Up to now, Tedna only assembles repeated sequences, and cannot discriminate transposable
elements. In the A. thaliana data set, we located the sequences assembled by Tedna that did not match the
RepBase sequences. Among them, we had 1618 matches in genes. Most map to protein of unknown function;
some of them could be misannotated transposable elements. The other fragments map to known duplicated
genes (Agamous-like proteins, cellulose synthase, expansins, etc.). 305 fragments map to inserted copies,
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and have been thus missed in our classification protocol, most likely because they significantly diverged from
the consensus. 26 fragments mapped the gypsy element, 19 MuDR, 16 copia.

In a future version, we would like to provide an annotation of the output of Tedna, as RepeatExplorer
does, that would classify transposable elements and possibly discriminate genes or other repeated elements.
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